Maximal spanning time for neighborhood growth on the Hamming plane

نویسنده

  • Janko Gravner
چکیده

We consider a long-range growth dynamics on the two-dimensional integer lattice, initialized by a finite set of occupied points. Subsequently, a site x becomes occupied if the pair consisting of the counts of occupied sites along the entire horizontal and vertical lines through x lies outside a fixed Young diagram Z. We study the extremal quantity μ(Z), the maximal finite time at which the lattice is fully occupied. We give an upper bound on μ(Z) that is linear in the area of the bounding rectangle of Z, and a lower bound √ s− 1, where s is the side length of the largest square contained in Z. We give more precise results for a restricted family of initial sets, and for a simplified version of the dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighborhood Growth Dynamics on the Hamming Plane

We initiate the study of general neighborhood growth dynamics on two-dimensional Hamming graphs. The decision to add a point is made by counting the currently occupied points on the horizontal and the vertical line through it, and checking whether the pair of counts lies outside a fixed Young diagram. We focus on two related extremal quantities. The first is the size of the smallest set that ev...

متن کامل

A Locally Connected Spanning Tree Can Be Found in Polynomial Time on Simple Clique 3-Trees

A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that for each node its neighborhood in T induces a connected subgraph in G. The problem of determining whether a graph contains an LCST or not has been proved to be NP-complete, even if the graph is planar or chordal. The main result of this paper is a linear time algorithm that, given an SC 3-tree (i.e. a maxi...

متن کامل

Inverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance

Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance

Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017